Subspace Sampling and Relative-Error Matrix Approximation: Column-Based Methods
نویسندگان
چکیده
Given an m×n matrix A and an integer k less than the rank of A, the “best” rank k approximation to A that minimizes the error with respect to the Frobenius norm is Ak, which is obtained by projecting A on the top k left singular vectors of A. While Ak is routinely used in data analysis, it is difficult to interpret and understand it in terms of the original data, namely the columns and rows of A. For example, these columns and rows often come from some application domain, whereas the singular vectors are linear combinations of (up to all) the columns or rows of A. We address the problem of obtaining low-rank approximations that are directly interpretable in terms of the original columns or rows of A. Our main results are two polynomial time randomized algorithms that take as input a matrix A and return as output a matrix C, consisting of a “small” (i.e., a low-degree polynomial in k, 1/ , and log(1/δ)) number of actual columns of A such that ∥ ∥A− CCA ∥ ∥ F ≤ (1 + ) ‖A− Ak‖F with probability at least 1− δ. Our algorithms are simple, and they take time of the order of the time needed to compute the top k right singular vectors of A. In addition, they sample the columns of A via the method of “subspace sampling,” so-named since the sampling probabilities depend on the lengths of the rows of the top singular vectors and since they ensure that we capture entirely a certain subspace of interest.
منابع مشابه
Subspace Sampling and Relative-Error Matrix Approximation: Column-Row-Based Methods
Much recent work in the theoretical computer science, linear algebra, and machine learning has considered matrix decompositions of the following form: given an m×n matrix A, decompose it as a product of three matrices, C, U , and R, where C consists of a small number of columns of A, R consists of a small number of rows of A, and U is a small carefully constructed matrix that guarantees that th...
متن کاملar X iv : 0 70 8 . 36 96 v 1 [ cs . D S ] 2 7 A ug 2 00 7 Relative - Error CUR Matrix Decompositions ∗
Many data analysis applications deal with large matrices and involve approximating the matrix using a small number of “components.” Typically, these components are linear combinations of the rows and columns of the matrix, and are thus difficult to interpret in terms of the original features of the input data. In this paper, we propose and study matrix approximations that are explicitly express...
متن کاملColumn Subset Selection with Missing Data via Active Sampling
Column subset selection of massive data matrices has found numerous applications in real-world data systems. In this paper, we propose and analyze two sampling based algorithms for column subset selection without access to the complete input matrix. To our knowledge, these are the first algorithms for column subset selection with missing data that are provably correct. The proposed methods work...
متن کاملProvably Correct Algorithms for Matrix Column Subset Selection with Selectively Sampled Data
We consider the problem of matrix column subset selection, which selects a subset of columns from an input matrix such that the input can be well approximated by the span of the selected columns. Column subset selection has been applied to numerous real-world data applications such as population genetics summarization, electronic circuits testing and recommendation systems. In many applications...
متن کاملImproving CUR matrix decomposition and the Nyström approximation via adaptive sampling
The CUR matrix decomposition and the Nyström approximation are two important lowrank matrix approximation techniques. The Nyström method approximates a symmetric positive semidefinite matrix in terms of a small number of its columns, while CUR approximates an arbitrary data matrix by a small number of its columns and rows. Thus, CUR decomposition can be regarded as an extension of the Nyström a...
متن کامل